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Motivation

Large class of problems in macroeconomics & finance with complementarities

• currency attacks

• bank runs

• herding in financial markets

• price setting in New Keynesian models

Problem ⇒ complementarities often induce multiple equilibria
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Problems with Multiple Equilibria

Problems with multiple equilibria

• weak predictions

• no comparative statics

• equilibrium selection

In particular, equilibrium notion assumes an extreme amount of coordination

⇒ Global games are a way to model (more realistic) situations where coordination is difficult

2 / 26



Two Players Example

Carlsson and van Damme (1993)

α2 β2

α1 (0, 0) (0, θ − 1)
β1 (θ − 1, 0) (θ, θ)

When θ ∈ (0, 1) & complete information (Common Knowledge)

⇒ two pure strategy equilibria: (α1, α2) and (β1, β2)
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Incomplete Information

We could be general, but let’s use parametric assumptions for clarity

• Player i observes xi = θ + σϵi , with ϵi ∼iid N(0, 1)

• Prior over θ is “improper”: θ ∼ Uniform on R
⇒ Posterior beliefs follow θ | xi ∼ N(xi , σ

2)

Now the payoff of action β is uncertain

Cases:

• If σ → 0, common knowledge ⇒ perfect coordination & multiple equilibria

• If σ → ∞, common knowledge (& perfect coordination) again: E(θ|xi ) = E(θ)
⇒ multiple equilibria if E(θ) ∈ (0, 1)

• If σ ∈ (0,∞), we construct an eqm step by step
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Strategic Uncertainty

If σ ∈ (0,∞), signal xi matters and is not known by other players
⇒ “strategic uncertainty”

1) First iteration

• Suppose p1 believes p2 will play β for sure

• p1 plays β iff E(θ|x1) > 0

• since E(θ|x1) = x1, p1 plays β iff x1 > x1 = 0
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Second Iteration
Unreasonable to expect p2 to play β for sure

2) Second iteration

• Suppose p2 believes p1 will play β when x1 > 0

• Then p2 plays β when its expected payoff

[1− P(β1 | x2)][E(θ|x2)− 1] + P(β1 | x2)E(θ|x2) > 0

x2 − [1− P(β1 | x2)] > 0

and

P(β1 | x2) = P(x1 > 0 | x2) = P(θ + σϵ1 > 0 | x2) = P(x2 − σϵ2 + σϵ1 > 0)

= P (ϵ1 − ϵ2 > −x2/σ) = 1− Φ

(
−x2

σ
√
2

)
since (ϵ1 − ϵ2) ∼ N(0, 2)

• Hence, p2 plays β iff x2 > Φ
(

−x2
σ
√
2

)
→ x2 > x1 = 0
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Keep going...
3) Third iteration

• Suppose p1 believes p2 will play β when x2 > x2

• Then p1 plays β when its expected payoff

x1 − [1− P(β2)] > 0

and

P(β2 | x1) = P(x2 > x2 | x1) = P(x1 − σϵ1 + σϵ2 > x2) =

= P
(
ϵ2 − ϵ1 > (x2 − x1)/σ

)
= 1− Φ

(
x2 − x1

σ
√
2

)
• Hence, p1 plays β iff x1 > Φ

(
x2−x1
σ
√
2

)
→ x3

• and since

Φ

(
x2 − x

σ
√
2

)
> Φ

(
−x

σ
√
2

)
> 0

we know
x3 > x2 > x1 = 0
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Solution

As we saw, the expected payoff of playing β for i , given j has threshold x j

A(xi , x j) = x − Φ

(
x j − xi

σ
√
2

)

We look for the symmetric signal threshold that makes agents indifferent

x = Φ

(
x − x

σ
√
2

)
⇒ x =

1

2
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Remarks

The (ex-ante) probability each player plays β is

P(xi > 1/2) = P(θ + σϵi > 1/2) = P

(
ϵi >

1
2 − θ

σ

)
= Φ

(
θ − 1

2

σ

)

As σ → 0, the equilibrium is

{
(α1, α2) if θ < 1

2

(β1, β2) if θ > 1
2

• a grain of doubt (on the others’ action) gives us equilibrium selection

• given θ, agents’ investment decisions are independent

• completely ̸= complete-info or no-info worlds, where agents coordinate perfectly
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Continuum of Players

• So far, we considered a two-players game

• In macro and finance, we care more about a continuum of players

• We now consider a continuum of players

• We look at applications to bank runs and currency crises

• Agents have two options:

− a safe action, constant payoff
− a risky action, payoff depends on θ and what others do A

(run to the bank, attack the currency)

• If enough agents take the risky action, something happens
(currency crash, bank fails) → “Global Games of Regime Change”

In a nutshell

• complementarities: agents care about what others do (FOMO!), but...

• strategic uncertainty: agents are not sure about what others will do
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Bank Runs
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Goldstein and Pauzner (2005)
Demand–Deposit Contracts and the Probability of Bank Runs

• Continuum of measure 1 of depositors

• Must decide whether to withdraw their deposits early or “trust” the bank

• Deposits invested by the bank in a long term project with payoff θ

• Actions

1. Early withdrawal (“run”): sure payoff of 0
A ∈ [0, 1] is the mass of early withdrawals agents

2. Late withdrawal: payoff of θ − A
[Normalisation: can think of safe payoff as 1 and risky payoff as 1 + θ − A.]

As before, if all know that θ ∈ (0, 1) =⇒ multiple equilibria (A = {0, 1})
Dispersed information

• Player i observes xi = θ + σϵi , with ϵi ∼iid N(0, 1)

• Prior over θ is improper: θ ∼ Uniform on R
• Posterior beliefs then are θ | xi ∼ N (xi , σ)
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Strategic Uncertainty
What about beliefs of other’s actions?

• Suppose everyone follows a threshold strategy: withdraw if xi < x

• By the law of large numbers, the mass of people running on the bank = Prob(j runs)

A(x) = P(xj < x)

• Agent i ’s beliefs about others (or agent j ’s signal) is as before

E[A | xi ] = P(xj < x | xi ) = P(xi − ϵi + ϵj < x) = Φ

(
x − xi

σ
√
2

)
• So the expected payoff of the risky action (not running on the bank) is

E(θ − A | xi ) = xi − Φ

(
x − xi

σ
√
2

)
• Indifference condition

E(θ − A | x) = 0 =⇒ x =
1

2

⇒ same as before! 2-Players Eqm Alternative derivation
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Equilibrium Illustration
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Currency Crises (simplified)
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Morris and Shin (1998)
Unique Equilibrium in a Model of Self-Fulfilling Currency Attacks

• Continuum of measure 1 of speculators/currency short-sellers

• Exchange rate peg, abandoned if central bank unable to sustain it

• “Not Attack” (stay put): payoff 0

• “Attack” (short-sell):

− cost t of attack (transaction cost or cost of xccy funding)
− payoff if crash (regime change) 1− t
− payoff if resist (status quo) −t

• The central bank can defend the peg if

− reserves > short-selling volume θ > A

Common knowledge

• Once again, if all know θ ∈ (0, 1), there are multiple equilibria A ∈ {0, 1}
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Dispersed Information

Assume a slightly richer information structure here

• Player i observes xi = θ + σxϵi , with ϵi ∼iid N(0, 1)

• Normal prior over θ: θ ∼ N(µθ, σ
2
θ)

• As usual, precisions are defined as τθ := 1/σ2
θ, τx := 1/σ2

x

• Posterior beliefs then are

θ | xi ∼ N

(
τθµθ + τxxi
τθ + τx

,
1

τθ + τx

)
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Finding the equilibrium
• Suppose agents attack iff xi < x
• Actual mass of attackers is given by

A(θ) = Φ

(
x − θ

σx

)
• Critical level of fundamentals is defined as

θ∗ = Φ

(
x − θ∗

σx

)
if θ higher (lower), peg maintained (abandoned)

• Expected payoff for agent with xi who sells FX short

P(θ < θ∗ | xi )(1− t) + P(θ > θ∗ | xi )(−t)

• Simplify and consider indifference condition of marginal agent with xi = x

1− t = Φ

(√
τθ + τx

(
θ∗ − τθµθ + τxx

τθ + τx

))
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Finding the Equilibrium

• The two equations

θ∗ = Φ

(
x − θ∗

σx

)
1− t = Φ

(√
τθ + τx

(
θ∗ − τθµθ + τxx

τθ + τx

))
can be solved for (θ∗, x)

• Combining them we get

θ∗ = Φ

(
τθ√
τx

(θ∗ − µθ)−
√
τθ + τx√

τx
Φ−1(1− t)

)
and we get θ∗ as a function of parameters
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Special Case
In the special case of a uniform prior (τθ/

√
τx = 0), we get the simple solution

θ∗ = t; x = t + σxΦ
−1(t)
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Equilibrium Uniqueness
With τθ/

√
τx > 0, we get uniqueness when private signal are relatively precise wrt prior/public

signals, i.e. with sufficient amount of strategic uncertainty

If public signal more precise, coordination forces remain strong and multiplicity is possible
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Two Types of Uncertainty

Fundamental uncertainty → on the payoff θ (τθ)
Strategic uncertainty → on the actions of others (τx)

Consider τx → ∞
• agents learn θ perfectly, no more fundamental uncertainty

• but what are their beliefs on the actions of others?

• we can ask what is the distribution of the random variable A(θ) for agent i
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Strategic Uncertainty /1
“I observe signal x. What is the probability that the mass of agents attacking is smaller
than z?”

That is

P
( A︷ ︸︸ ︷
P(xj < x) < z | xi

)
= P

(
Φ

(
x − θ

σx

)
< z | xi

)
=

= P
(
θ > x − σxΦ

−1(z) | xi
)

= P
(
(θ −m)/s > (x − σxΦ

−1(z)−m)/s
)

= 1− Φ

(√
τθ + τx

(
x − τθµθ + τxxi

τx + τθ
− Φ−1(z)

√
τx

))
and for the agent that has xi = x

1− Φ

(
τθ√

τx + τθ
(x − µθ)−

√
τθ + τx√

τx
Φ−1(z)

)
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Strategic Uncertainty /2

When

• τθ = 0 (diffuse prior)

or

• τx → ∞ (no fundamental uncertainty)

we get
P(A < z | xi = x) = z

=⇒ Agent x is “agnostic”: assigns the same probability to any A!

[When P(Y < z) = z , Y is Uniform on the [0, 1] interval.]

24 / 26



Strategic Uncertainty /3
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Appendix
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Alternative Derivation of E(A(θ) | x)

E(A(θ) | x) =
∫

Φ

(
k − θ

σ

)
dΦ

(
θ − x

σ

)
=

∫
Φ

(
k − x

σ
− y

)
dΦ(y)

= Φ

(
k − x

σ
√
2

)
which is indeed the same as

P(xj < k | x) = Φ

(
k − x

σ
√
2

)
Back
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